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Special features of construction of an experimental multifactor model in the presence of constraints have been
considered. The conditions of formation of constraints in the factor space and the search for the Y(X) extre-
mum on the subset X of admissible combinations of factor levels belonging to the region Ω have been distin-
guished.

An experimental mathematical model is a symbolic representation that expresses, with a required accuracy, the
quantitative relations characterizing the object under investigation. The present work suggests a method of construction
of an analytical model where the relation between the levels of the factors and the response can be expressed by one
of the combinations of functions of the assumed forms (rational, linear fractional, exponential, logarithmic, etc.)

The method of steepest descent, rise over a crest, and simplex-planning of an experiment are used to find the
extremum in multifactor problems. The search for the optimum in multifactor problems includes the following stages:
1) problem formulation; 2) collection of a priori information; 3) pre-planning an experiment (those factors are distin-
guished that can affect object functioning and the optimization parameter); 4) planning and implementation of the ex-
periment at the initial point of search; 5) search for the optimum region; 6) planning an experiment in the optimum
region. The present study is aimed at determining a plan for constructing a model in the local region that encompasses
the optimum point [1, 2].

The problem suggested is solved by a modified method: construction and optimization of the experimental
mathematical model are executed on the basis of statistical data in the presence of functional constraints

aimin ≤ ϕi(x1, x2, ..., xk) ≤ aimax ,

with the form of the constraint function and its parameters being determined based on experimental data. In the gen-
eral case, the constraints determine the region Ω of admissible combinations of the levels of factors in the factor
space. Consequently, the problem of optimization in the presence of constraints can be formulated mathematically as
the problem of the search for the Y(X) extremum on the subset of values of X belonging to Ω.

At the first stage, mathematical models for the parameters of optimization and constraints are constructed; then
a conventional extremum, the models of whose constraints are the equations of coupling between the levels of the fac-
tors, is determined analytically. Thus, the problem is reduced to determination of the conventional extremum by the
Lagrange multiplier method, the essence of which is the following: the response function is determined as the polyno-
mial model

y = f(x1, x2, ..., xk) (1)

provided that the k factors are related by n (n < k) equations that are parametrically nonlinear:

Z1 = ϕ1(x1, x2, ..., xk) ,
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Z2 = ϕ2(x1, x2, ..., xk) ,

............................ ,

Zn = ϕn(x1, x2, ..., xk) .

(2)

We compose the Lagrange function

F(x1, x2, ..., xk, λj) = f(x1,x2, ..., xk) + λ1(ϕ1(x1,x2, ..., xk) — z1) +

+ λ2(ϕ2(x1,x2, ..., xk) — z2) + ... + λn(ϕn(x1,x2, ..., xk) — zk) . (3)

Having equated its partial derivatives with respect to all factors and multipliers λ, we obtain a system of n + k equa-
tions of the form

∂F

∂xi
 = 

∂f

∂xi
 + ∑ 

j=1

n

λj 
∂ϕn

∂xi
 = 0 ,

(4)

∂F

∂λj
 = ϕn(x1,x2, ..., xk) — zk = 0 ,

(5)

from which we find the values of xi and λj.
We determine the necessary conditions for extremum existence by Eqs. (4) and (5) and the sufficient condi-

tions of its existence by the sign of the total differential of second order: d2F > 0 at the point where X is minimum
and d2F < 0 where it is maximum. We should mention special features of construction of the Lagrange function. Func-
tion (1) is constructed based on the fractional factor experiment 2k. Coupling equations (2) are written proceeding from
the shape of the curve of experimental data in construction of which rectification (leveling) by corresponding substitu-
tion of coordinates is done. The method of leveling depends on the type of the model and the number of its parame-
ters. A preliminary decision on the applicability of the selected model is made if in the system of coordinates such a
curve can be drawn to which experimental points are very close.

This technique was used for constructing a nonlinear statistical model of an engineering problem that has the
form of (3)

TABLE 1. Planning Matrix and Experimental Results

Variation range and level of the factors x0 x1 (δ) x2 (v, km/h) x1x2 z

Main level (0) 0.5 32

Variation ranges 0.1 16

Lower level (−1) 0.4 16

Upper level (+1) 0.6 48

1 + + + + 0.78

2 + — + — 0.79

3 + + — — 0.81

4 + — — + 0.82

5 + + + + 0.81

6 + — + — 0.81

7 + + — — 0.80

8 + — — + 0.79
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F(x1, x2, λ) = a0 + a1x1 + a2x2 + a3x1x2 + λ 



c0 + c1x2 + c2x2

2
 — 

x1

b0 + b1x1
2




 ,

of variation of the braking torque (constraint) and the value of the coefficient of longitudinal adhesion of wheels (δ)
as a function of the velocity of motion (v).

To obtain mathematical models in the form of a polynomial, we realized the fractional factor experiment 23.
As the factors we consider the velocity of vehicle motion v (km/h) and the value of the coefficient of longitudinal ad-
hesion of the wheels δ. Table 1 gives the levels of the factors and experimental results.

The following model was obtained based on processing of the results:

F(x1, x2, λ) = 0.8 — 1.25⋅10
—3

x1 — 3.75⋅10
—3

x2 — 0.2x1x2 +

+ λ —6.4⋅10
—4

 + 3.2⋅10
—3

x2 — 5.1⋅10
—5

x2
2
 — 

x1

0.2919 + 1.149 x1
2




 .

Differentiation of F with respect to x1, x2, and λ, provided that the values of x1 and x2 are on the surface of
the radius ρ (ρ = x1

2 + x2
2), yields a system of three nonlinear equations. Results of solution of this system give the

following optimum values of the levels of the factors: δ = 0.63 and v = 56 km/h. Moreover, the data obtained are the
constraints in construction of an optimal multimass vibrational system from the point of view of the minimum of root-
mean-square values of mass acceleration.

Thus, based on the technique developed, we determined optimum values of one of the response functions with
constraints. This made it possible to analytically estimate the exploitation properties (factors v and δ) of a vehicle.

NOTATION

a0, a1, a2, a3, c0, c1, and c2, coefficients of the polynomial model; b0 and b1, coefficients of the coupling
equation; v, car velocity; Zn, constraint functions; Zk 2 Zn, values of the factor belonging to the constraint region; λn,
Lagrange multiplier; δ, coefficient of longitudinal adhesion of the wheels; ρ, response surface. Indices: max, maximum;
min, minimum.
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